
1

Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 7 – Part II: Decision Tree &
Reinforcement Learning

2

Decision tree – Introduction
n Decision tree (DT) learning

• To approximate a discrete-valued target function
• The target function is represented by a decision tree

n A DT can be represented (interpreted) as a set of IF-THEN
rules (i.e., easy to read and understand)

n Capable of learning disjunctive expressions

n DT learning is robust to noisy data

n One of the most widely used methods for inductive
inference

n Successfully applied to a range of real-world applications

3

Example of a DT: Which documents are of my interest?

is absent

is present

“sport”?

“football”?

is present

InterestedUninterested

“player”?

is present is absentis absent

Interested

is absent

“goal”?

is present

Interested Uninterested

• (…,“sport”,…,“player”,…) → Interested
• (…,“goal”,…) → Interested
• (…,“sport”,…) → Uninterested

4

Example of a DT: Does a person play tennis?

• (Outlook=Overcast, Temperature=Hot, Humidity=High,
Wind=Weak) → Yes

• (Outlook=Rain, Temperature=Mild, Humidity=High, Wind=Strong)
→ No

• (Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong)
→ No

Sunny

Outlook=?

Wind=?

Strong

YesNo

Humidity=?

High WeakNormal

Yes

Rain

No

Overcast

Yes

5

Decision tree – Representation (1)

n Each internal node represents an attribute to be tested by
instances

n Each branch from a node corresponds to a possible value
of the attribute associated with that node

n Each leaf node represents a classification (e.g., a class
label)

n A learned DT classifies an instance by sorting it down the
tree, from the root to some leaf node

→ The classification associated with the leaf node is used for the
instance

6

Decision tree – Representation (2)

n A DT represents a disjunction of conjunctions of
constraints on the attribute values of instances

n Each path from the root to a leaf corresponds to a
conjunction of attribute tests

n The tree itself is a disjunction of these conjunctions

n Examples
→ Let’s consider the two previous example DTs…

7

Which documents are of my interest?

is absent

is present

“sport”?

“football”?

is present

InterestedUninterested

“player”?

is present is absentis absent

Interested

is absent

“goal”?

is present

Interested Uninterested

[(“sport” is present) Ù (“player” is present)] Ú

[(“sport” is absent) Ù (“football” is present)] Ú

[(“sport” is absent) Ù (“football” is absent) Ù (“goal” is present)]

8

Does a person play tennis?

[(Outlook=Sunny) Ù (Humidity=Normal)] Ú

(Outlook=Overcast) Ú

[(Outlook=Rain) Ù (Wind=Weak)]

Sunny

Outlook=?

Wind=?

Strong

YesNo

Humidity=?

High WeakNormal

Yes

Rain

No

Overcast

Yes

9

Decision tree learning – ID3 algorithm

ID3_alg(Training_Set, Class_Labels, Attributes)

Create a node Root for the tree

If all instances in Training_Set have the same class label c, Return the tree of the
single-node Root associated with class label c

If the set Attributes is empty, Return the tree of the single-node Root associated with

class label º Majority_Class_Label(Training_Set)

A ← The attribute in Attributes that “best” classifies Training_Set
The test attribute for node Root ← A
For each possible value v of attribute A

Add a new tree branch under Root, corresponding to the test: “value of attribute A is v”

Compute Training_Setv = {instance x | x Í Training_Set, xA=v}

If (Training_Setv is empty) Then

Create a leaf node with class label º Majority_Class_Label(Training_Set)

Attach the leaf node to the new branch

Else Attach to the new branch the sub-tree ID3_alg(Training_Setv,
Class_Labels, {Attributes \ A})

Return Root

10

ID3 algorithm – Intuitive idea
n Perform a greedy search through the space of possible DTs
n Construct (i.e., learn) a DT in a top-down fashion, starting from its root

node
n At each node, the test attribute is the one (of the candidate attributes)

that best classifies the training instances associated with the node
n A descendant (sub-tree) of the node is created for each possible value

of the test attribute, and the training instances are sorted to the
appropriate descendant node

n Every attribute can appear at most once along any path of the tree
n The tree growing process continues

• Until the (learned) DT perfectly classifies the training instances, or
• Until all the attributes have been used

11

Selection of the test attribute
n A very important task in DT learning: at each node, how to choose

the test attribute?
n To select the attribute that is most useful for classifying the training

instances associated with the node
n How to measure an attribute’s capability of separating the training

instances according to their target classification
→ Use a statistical measure – Information Gain

n Example: A two-class (c1, c2) classification problem
→ Which attribute, A1 or A2, should be chosen to be the test attribute?

A1=?

v12
v11 v13

(c1: 35, c2: 25)

c1: 21
c2: 9

c1: 5
c2: 5

c1: 9
c2: 11

A2=?
v21 v22

(c1: 35, c2: 25)

c1: 8
c2: 19

c1: 27
c2: 6

12

Entropy
n A commonly used measure in the Information Theory field
n To measure the impurity (inhomogeneity) of a set of instances
n The entropy of a set S relative to a c-class classification

å
=

-=
c

i
ii ppSEntropy

1
2log.)(

where pi is the proportion of instances in S belonging to class i, and
0.log20=0 (convention)

n The entropy of a set S relative to a two-class classification
Entropy(S) = -p1.log2p1 – p2.log2p2

n Interpretation of entropy (in the Information Theory field)
→ The entropy of S specifies the expected number of bits needed to encode

class of a member randomly drawn out of S
• Optical length code assigns –log2p bits to message having probability p
• The expected number of bits needed to encode a class: p.log2p

13

Entropy – Two-class example
n S contains 14 instances, where 9 belongs to

class c1 and 5 to class c2
n The entropy of S relative to the two-class

classification:
Entropy(S) = -(9/14).log2(9/14)-

(5/14).log2(5/14) » 0.94

n Entropy =0, if all the instances belong to the
same class (either c1 or c2)
→Need 0 bit for encoding (no message need be sent)

0
0.5 1

0.5

1

E
nt

ro
py

(S
)

p1

n Entropy =1, if the set contains equal numbers of c1 and c2 instances
→ Need 1 bit per message for encoding (whether c1 or c2)

n Entropy = some value in (0,1), if the set contains unequal numbers of
c1 and c2 instances

→ Need on average <1 bit per message for encoding

14

Information gain
n Information gain of an attribute relative to a set of instances is

• the expected reduction in entropy
• caused by partitioning the instances according to the attribute

n Information gain of attribute A relative to set S

)(
||
||)(),(

)(
v

AValuesv

v SEntropy
S
S

SEntropyASGain å
Î

-=

where Values(A) is the set of possible values of attribute A, and
Sv = {x | xÎS, xA=v}

n In the above formula, the second term is the expected value of
the entropy after S is partitioned by the values of attribute A

n Interpretation of Gain(S,A): The number of bits saved
(reduced) for encoding class of a randomly drawn member of S,
by knowing the value of attribute A

15

Training set - Example
Let us consider the following dataset (of a person)

S:

YesStrongHighMildOvercastD12

YesWeakNormalHotOvercastD13

Day Outlook Temperature Humidity Wind Play Tennis
D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D14 Rain Mild High Strong No

[Mitchell, 1997]

16

Information gain – Example
nWhat is the information gain of attribute Wind relative to the

training set S – Gain(S,Wind)?
nAttribute Wind have two possible values: Weak and Strong
nS = {9 positive and 5 negative instances}
nSweak = {6 pos. and 2 neg. instances having Wind=Weak}
nSstrong = { 3 pos. and 3 neg. instances having Wind=Strong}

å
Î

-=
},{

)(
||
||)(),(

StrongWeakv
v

v SEntropy
S
S

SEntropyWindSGain

)().14/6()().14/8()(StrongWeak SEntropySEntropySEntropy --=

048.0)1).(14/6()81.0).(14/8(94.0 =--=

17

Decision tree learning – Example (1)
n At the root node, which attribute of {Outlook, Temperature,
Humidity, Wind} should be the test attribute?

• Gain(S, Outlook) = ... = 0.246
• Gain(S, Temperature) = ... = 0.029
• Gain(S, Humidity) = ... = 0.151
• Gain(S, Wind) = ... = 0.048

→So, Outlook is chosen as the test attribute for the root node!

Outlook=?

Node1

OvercastSunny Rain

S={9+, 5-}

SSunny={2+, 3-} SOvercast={4+, 0-} SRain={3+, 2-}

Yes Node2

The highest
IG value

18

Decision tree learning – Example (2)

nAt Node1, which attribute of
{Temperature, Humidity,
Wind} should be the test
attribute?
Note! Attribute Outlook is
excluded, since it has been used by
Node1’s parent (i.e., the root node)

• Gain(SSunny, Temperature) =...= 0.57

• Gain(SSunny, Humidity) = ... = 0.97
• Gain(SSunny, Wind) = ... = 0.019

→So, Humidity is chosen as
the test attribute for Node1!

Outlook=?

Humidity=?

Overcast
Sunny

Rain

S={9+, 5-}

SSunny=
{2+, 3-}

SOvercast=
{4+, 0-} SRain=

{3+, 2-}

Yes Node2

Node3 Node4

SHigh=
{0+, 3-}

SNormal=
{2+, 0-}

High Normal

19

DT learning – Hypothesis space search (1)

n Induction of Decision Trees (ID3) – Quinlan (1986)
n ID3 searches in a space of hypotheses (i.e., of possible

DTs) for one that fits the training instances

n ID3 performs a simple-to-complex, hill-climbing search,
beginning with the empty tree

n The hill-climbing search is guided by an evaluation metric
– the information gain measure

n ID3 searches only one (rather than all possible) DT
consistent with the training instances

20

DT learning – Hypothesis space search (2)

n ID3 does not performs backtracking in its search
→Guaranteed to converge to a locally (but not the globally) optimal

solution
→Once an attribute is selected as the test for a node, ID3 never

backtracks to reconsider this choice

n At each step in the search, ID3 uses a statistical measure
of all the instances (i.e., information gain) to refine its
current hypothesis

→The resulting search is much less sensitive to errors in individual
training instances

21

Inductive bias in DT learning (1)
nBoth the two DTs below are consistent with the given training

dataset
nSo, which one is preferred (i.e., selected) by the ID3 algorithm?

Weak

Sunny

Outlook=?

Wind=?

Strong

YesNo

Humidity=?

High Normal

Yes

Rain

No

Overcast

Yes

Sunny

Outlook=?

Wind=?

Strong

YesNo

Temperature=?

Hot WeakMild

Yes

Rain

No

Overcast

Yes

Cool

Humidity=?

High

Yes

Normal

No

22

Inductive bias in DT learning (2)
n Given a set of training instances, there may be many DTs

consistent with these training instances

n So, which of these candidate DTs should be chosen?

n ID3 chooses the first acceptable DT it encounters in its

simple-to-complex, hill-climbing search

→Recall that ID3 searches incompletely through the hypothesis

space (i.e., without backtracking)

n ID3’s search strategy

• Select in favor of shorter trees over longer ones

• Select trees that place the attributes with highest information gain

closest to the root node

23

Issues in DT learning

n Over-fitting the training data
q Overfitting: production of an analysis that corresponds too closely

or exactly to a particular set of data, and may therefore fail to fit
additional data or predict future observations reliably

n Handling continuous-valued (i.e., real-valued) attributes

n Choosing appropriate measures for attribute selection

n Handling training data with missing attribute values

n Handling attributes with differing costs

→ An extension of the ID3 algorithm with the above mentioned issues
resolved results in the C4.5 algorithm

REINFORCEMENT
LEARNING

Reinforcement Learning (RL)

n RL is ML method that optimizes the reward
q A class of tasks
q A process of trial-and-error learning

n Good actions are “rewarded”
n Bad actions are “punished”

Features of RL

n Learning from numerical rewards
n Interaction with the task; sequences of states,

actions and rewards
n Uncertainty and non-deterministic worlds
n Delayed consequences
n The explore/exploit dilemma
n The whole problem of goal-directed learning

Points of view

n From the point of view of agents
q RL is a process of trial-and-error learning
q How much reward will I get if I do this action?

n From the point of view of trainers
q RL is training by rewards and punishments
q Train computers like we train animals

Applications of RL

n Robot
n Animal training
n Scheduling
n Games
n Control systems
n …

Supervised Learning vs.
Reinforcement Learning
n Supervised learning

q Teacher: Is this an AI
course or a Math course?

q Learner: Math
q Teacher: No, AI
q …
q Teacher: Is this an AI

course or a Math course?
q Learner : AI
q Teacher : Yes

n Reinforcement learning
q World: You are in state 9.

Choose action A or B
q Learner: A
q World: Your reward is 100
q …
q World: You are in state 15.

Choose action C or D
q Learner: D
q World : Your reward is 50

Examples

n Chess
q Win +1, loose -1

n Elevator dispatching
q Reward based on mean squared time for elevator

to arrive (optimization problem)
n Channel allocation for cellular phones

q Lower rewards the more calls are blocked

Policy, Reward and Goal

n Policy
q defines the agent’s behaviour at a given time
q maps from perceptions to actions
q can be defined by: look-up table, neural net, search algorithm...
q may be stochastic

n Reward Function
q defines the goal(s) in an RL problem
q maps from states, state-action pairs, or state-action-successor

state, triplets to a numerical reward
q goal of the agent is to maximise the total reward in the long run
q the policy is altered to achieve this goal

Reward and Return

n The reward function indicates how good things are right
now

n But the agent wants to maximize reward in the long-term
i.e.. over many time steps

n We refer to long-term (multi-step) reward as return

where
q T is the last time step of the world

Tttt rrrR +++= ++ ...21

Discounted Return

n The geometrically discounted model of return

q is called discount rate, used to
n Bound the infinite sum
n Favor earlier rewards, in other words to give preference to

shorter paths

10
...21

££
+++= ++

g
gg T
T

ttt rrrR

g

Optimal Policies

n An RL agent adapts its policy in order to
increase return

n A policy p1 is at least as good as a policy p2 if
its expected return is at least as great in each
possible initial state

n An optimal policy p is at least as good as any
other policy

Policy Adaptation Methods

n Value function-based methods
q Learn a value function for the policy
q Generate a new policy from the value function
q Q-learning, Dynamic Programming

Value Functions

n A value function maps each state to an
estimate of return under a policy

n An action-value function maps from state-
action pairs to estimates of return

n Learning a value function is referred to as the
“prediction” problem or ‘policy evaluation’ in
the Dynamic Programming literature

Q-learning

n Learns action-values Q(s,a) rather than state-
values V(s)

n Action-values learning
q Q(s,a) = value of doing action a in state s

n Q-learning improves action-values iteratively
until it converges

)'),,((max),(),(' aasTQasRasQ ag+=

Q-learning Algorithm

n

Example

n Initially n Initialization

G G
1000

0 0

0

0 0 100
0 00

0

Example

n s1
n Assume
n Go right: s2

q Reward: 0

A G
1000

0 0

00

0 0 100
0 00

A G
1000

0 0

00

0 0 100
0 00

9,0=g

Example

n Go right
q Reward: 100

n Update s2
q Reward: 100

A G
1000

0 0

00

0 0 100
0 00

A G
1000

0 0

00

0 0 100
0 00

Example

n Update s1
q Reward: 90

n s2

A G
10090

0 0

00

0 0 100
0 00

A G
10090

0 0

00

0 0 100
0 00

Example: result of Q-learning

G
10090

81 90

8172

81 90 100
72 81

81

Exercice

n Agent is in room C of the building
n The goal is to get out of the building

Modeling the problem

A B C D E F
A
B 100

C
D
E 100

F 100

Result

A B C D E F
A 400

B 320 500

C 320

D 400 255 400

E 320 320 500

F 400 400 500Divide all rewards by 5

Result: C => D => B => F
C => D => E => F

8,0=g

Reinforcement Learning

How do we train a robot to reach the end goal with
the shortest path without stepping on a mine?

Build a “lookup table” where we calculate
the maximum expected future rewards for action
at each state.

q Each Q-table score will
be the maximum
expected future reward
that the robot will get if
it takes that action at
that state.

q An iterative process, as we
need to improve the Q-
Table at each iteration..

Update the Q(s,a) function.

https://en.wikipedia.org/wiki/Q-learning

n Core of Q-Learning is a simple value iteration
update, using the weighted average of the old
value and the new information:

https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/Markov_decision_process

Some links of interest

n https://medium.freecodecamp.org/how-to-
apply-reinforcement-learning-to-real-life-
planning-problems-90f8fa3dc0c5

n https://medium.freecodecamp.org/an-
introduction-to-reinforcement-learning-
4339519de419

https://medium.freecodecamp.org/how-to-apply-reinforcement-learning-to-real-life-planning-problems-90f8fa3dc0c5
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

Reading and Suggested Exercises

n Chapter 21
n Exercises 21.5, 21.7, 21.8

